1. 6.1
    Without using a calculator, determine the following in terms of sin36:
    1. 6.1.1
      sin324°
      (1)
      1. 6.1.2
        cos72°
        (2)
      2. 6.2
        Prove the identity: 1 -
        tan2θ
        1 + tan2θ
        = cos2θ
        (4)
        1. 6.3
          Use your answer above to determine the general solution of:
          1 -
          tan2½x
          1 + tan2½x
          = ¼
          (6)
          1. 6.4
            Given: cos(A - B) = cosAcosB + sinAsinB
            1. 6.4.1
              Use the formula for cos(A - B) to derive a formula for sin(A - B).
              (4)
              1. 6.4.2
                Without using a calculator, show that sin(x + 64°)cos(x + 379°) + sin(x + 19°)sin(x + 244°) =
                1
                2
                for all values of x.
                (6)
              (23)
              [{"prnt":"6.1","num":"6.1.1","answer":""},{"prnt":"6.1","num":"6.1.2","answer":""},{"prnt":"6","num":"6.2","answer":""},{"prnt":"6","num":"6.3","answer":""},{"prnt":"6.4","num":"6.4.1","answer":""},{"prnt":"6.4","num":"6.4.2","answer":""}]

              Answers

                1. 6.1.1
                2. 6.1.2
                3. 6.2
                4. 6.3
                5. 6.4.1
                6. 6.4.2
              Loading...